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We propose an exchange-driven aggregation growth model of population and assets with mutually catalyzed
birth to study the interaction between the population and assets in their exchange-driven processes. In this
model, monomer �or equivalently, individual� exchange occurs between any pair of aggregates of the same
species �population or assets�. The rate kernels of the exchanges of population and assets are K�k , l�=Kkl and
L�k , l�=Lkl, respectively, at which one monomer migrates from an aggregate of size k to another of size l.
Meanwhile, an aggregate of one species can yield a new monomer by the catalysis of an arbitrary aggregate of
the other species. The rate kernel of asset-catalyzed population birth is I�k , l�= Ikl� �and that of population-
catalyzed asset birth is J�k , l�=Jkl��, at which an aggregate of size k gains a monomer birth when it meets a
catalyst aggregate of size l. The kinetic behaviors of the population and asset aggregates are solved based on
the rate equations. The evolution of the aggregate size distributions of population and assets is found to fall into
one of three categories for different parameters � and �: �i� population �asset� aggregates evolve according to
the conventional scaling form in the case of ��0 ���0�, �ii� population �asset� aggregates evolve according
to a modified scaling form in the case of �=0 and ��0 ��=0 and ��0�, and �iii� both population and asset
aggregates undergo gelation transitions at a finite time in the case of �=��0.

DOI: 10.1103/PhysRevE.74.046113 PACS number�s�: 82.20.�w, 05.40.�a, 68.43.Jk, 89.75.Da

I. INTRODUCTION

Aggregation growth phenomena are popular and impor-
tant in natural science for abundant kinetic evolutionary be-
haviors arising from a variety of complex mechanisms �1–7�.
A pure aggregation process is the irreversible coalescence of
clusters to form clusters of infinitely increasing mass
�1,4,8–13�. This originally studied mechanism arises in di-
verse branches of physics, such as gelation, island formation
in epitaxial surface growth, stellar evolution, and so on. Re-
search was then steadily extended to aggregation phenomena
with more complex mechanisms, such as fragmentation, an-
nihilation, and their various combinations, and so on
�14–19�.

Recently, much attention has been devoted to generalized
aggregation phenomena in sociology and economy to inves-
tigate the kinetic behaviors of aggregation growth driven by
migration or exchange. Ispolatov, Krapivsky, and Redner in-
troduced several asset exchange models for the evolution of
wealth distribution in an economic interaction population
�20�. Leyvraz and Redner proposed a migration-driven irre-
versible aggregate growth model for the evolution of city
populations �21�. In these models, irreversible growth of ag-
gregates takes place through biased migration or unbiased
exchange mechanisms. In the biased migration model, there
exists preferential migration of a monomer �equivalently, one
unit of assets in asset exchange models or one person in
migration-driven city population models� from a smaller ag-
gregate to a larger aggregate. The mechanism can be de-

scribed by an irreversible reaction scheme Ak+Al →
K�k,l�

Ak−1

+Al+1 �k� l�, where Ak denotes an aggregate characterized
only by its size k �an aggregate of k units of assets in asset
exchange models or k persons in migration-driven city popu-
lation models� and the migration rate kernel K�k , l� repre-
sents the rate of a monomer migrating from an aggregate of
size k to another aggregate of size l, which generally depends
on the sizes of the two aggregates, while in an unbiased
exchange model, an aggregate is equally likely to gain or to
lose a monomer. These processes exhibit much more abun-
dant kinetic behaviors than those in single aggregation, an-
nihilation, and fragmentation processes, or their various
combinations.

In fact, the migration or exchange-driven aggregations ex-
ist in many branches of physics and social sciences, and their
mechanisms are very complex. In our previous works, we
investigated the kinetics of the general unbiased migration-
driven aggregation �exchange-driven growth� system �22�.

The exchange scheme is Ak+Al →
K�k,l�

Ak−1+Al+1 or Ak

+Al →
K��k,l�

Ak+1+Al−1, where K�k , l� is the rate kernel of one
monomer migrating from the aggregate Ak to another aggre-
gate Al, and K��k , l� is that of the aggregate Ak obtaining one
monomer from the aggregate Al through migration. And we
further generalized the research to exchange-driven aggrega-
tion with birth and death to mimic the evolution of city popu-
lation and individual wealth �23,24�. The self-birth and death

schemes are Ak→
J1k

Ak+1 and Ak→
J2k

Ak−1, respectively, where J1
and J2 are two proportional constants of the reaction rate
kernels of birth and death. Ben-Naim and Krapivsky per-
formed general research on exchange-driven growth with the
product rate kernel K�k , l�=K�l ,k�= �kl�� and the generalized
homogeneous rate kernel K�k , l�=K�l ,k�= �k�l�+k�l�� �25�.
The kinetic behavior was found to fall into three categories:
growth, gelation, and instant gelation.
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Generally, the exchange-driven growth of population and
that of assets react with each other. A city with more assets
per person will attract more migrants and its population will
grow much faster. On the other hand, a city with larger popu-
lation will provide more opportunities for people to develop
their careers, and thus attract more migrants and more invest-
ment. In this paper, we focus on the interaction between the
aggregates of population and assets in their exchange-driven
aggregation processes. For simplicity, we propose a two-
species �population and assets� exchange-driven aggregation
growth system with their mutual catalysis-driven birth to
study the interaction of the two species.

The rest of this paper is organized as follows. In Sec. II,
we introduce the model of the exchange-driven aggregation
growth of population and assets with their mutually cata-
lyzed birth, and describe the outline of the generalized
Smoluchowski rate equation approach to study the kinetic
evolution behaviors of the aggregate size distributions of
population and assets. In Sec. III, we study the kinetics of the
system in various cases with different dependence of cata-
lyzed birth rates of population and assets on the catalysts’
sizes. Finally, a brief summary is given in Sec. IV.

II. MODEL OF THE EXCHANGE-DRIVEN GROWTH
OF POPULATION AND ASSETS WITH THEIR MUTUALLY

CATALYZED BIRTH

In this model, the exchange-driven aggregation of popu-

lation is described as Ak+Al →
K�k,l�

Ak−1+Al+1 with exchange
rate kernel K�k , l�, which is one person migrating from an
aggregate Ak to another aggregate Al, and thus gives rise to a
gain in the number of aggregates Ak−1 and a loss in the num-
ber of aggregates Ak at time t�, which is denoted by ak�t�.
The exchange-driven aggregation of assets is described as

Bk+Bl →
L�k,l�

Bk−1+Bl+1 with the rate kernel L�k , l�, which rep-
resents one unit of assets migrating from an aggregate Bk to
another aggregate Bl, and gives rise to a gain in bk−1�t� and a
loss in bk�t� at time t�. In particular, the aggregate A1 �or B1�
becomes an empty aggregate and disappears when its one
unit of population �or assets� migrates out. This gives rise to
a reduction in the total number of aggregates. The reaction of

population birth driven by asset catalysis is Ak+Bl →
I�k,l�

Ak+1
+Bl, with the rate kernel I�k , l�; and population-catalyzed

asset birth is given by Al+Bk →
J�k,l�

Al+Bk+1, with the rate
kernel J�k , l�.

In the physical sense, for asset-catalyzed population birth,
the creation of more than one unit �for example, two, three or
even more people� at each reaction step should be considered
for a large population aggregate catalyzed by asset aggregate
with a large amount of assets, and similarly for population-
catalyzed asset birth. This consideration will make the sys-
tem evolve in a more complicated way and the evolution
behaviors become very hard to study. To perform preliminary
research on such a complex mutually catalyzed birth of
two species �population and assets� in exchange-driven ag-
gregation and find the basic evolution characteristics of the

aggregate size distributions, we focus here only on the one-
unit catalyzed birth process; multiunit birth processes are
considered as a sequence of one-unit birth processes and thus
are ignored. Meanwhile, we choose the catalyzed birth rate
kernels depending on the size of the aggregate that will have
a monomer birth and the size of the catalyst aggregate to
reflect this physical sense to some extent.

In this paper, we assume that the system has spatial ho-
mogeneity, so that fluctuations in the densities of the reac-
tants are ignored and the aggregates are considered to be
homogeneously distributed in space throughout the whole
processes. Thus, the theoretical approach to investigate the
kinetics of the aggregation process can be based on the rate
equations in the mean-field frame, which assumes that the
reaction proceeds at a rate proportional to the reactant con-
centrations. We generalize the rate equation of the exchange-
or migration-driven aggregation process �20,21� and write
the corresponding rate equations for our system as follows:

da1

dt
= �

l=1

�

K�2,l�a2al − �
l=1

�

�K�1,l� + K�l,1��a1al

− �
l=1

�

I�1,l�a1bl, �1�

dak

dt
= �

l=1

�

K�k + 1,l�ak+1al + �
l=1

�

K�l,k − 1�ak−1al

− �
l=1

�

�K�k,l� + K�l,k��akal + �
l=1

�

I�k − 1,l�ak−1bl

− �
l=1

�

I�k,l�akbl �k = 2,3, . . . � , �2�

db1

dt
= �

l=1

�

L�2,l�b2bl − �
l=1

�

�L�1,l� + L�l,1��b1bl

− �
l=1

�

J�1,l�b1al, �3�

dbk

dt
= �

l=1

�

L�k + 1,l�bk+1bl + �
l=1

�

L�l,k − 1�bk−1bl

− �
l=1

�

�L�k,l� + L�l,k��bkbl + �
l=1

�

J�k − 1,l�bk−1al

− �
l=1

�

J�k,l�bkal �k = 2,3, . . . � . �4�

In Eq. �2� �similarly in Eq. �4��, the first two terms account

for the gain in ak�t� due to the migrations Ak+1+Al →
K�k+1,l�

Ak

+Al+1 and Ak−1+Al →
K�l,k−1�

Ak+Al−1 �l=1,2 , . . . �, while their

equiprobable reaction channels Ak+1+Al →
K�l,k+1�

Ak+2+Al−1 and
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Ak−1+Al →
K�k−1,l�

Ak−2+Al+1 give rise to gains in ak+2�t� and
ak−2�t�, which are accounted for in the rate equations
dak+2 /dt and dak−2 /dt, respectively. The third term in Eqs.
�2� and �4� accounts for the loss in ak�t� due to the migration

Ak+Al →
K�k,l�

Ak−1+Al+1 and its equiprobable process Ak

+Al →
K�l,k�

Ak+1+Al−1. The fourth and fifth terms account, re-
spectively, for the gain and loss in ak�t� due to asset-
catalyzed population birth.

For a1�t�, the rate equation �1� has not the second and
fourth terms of the equation for ak �t��k=2,3 , . . . � because
there is no empty aggregate A0, and similarly for b1�t�. But
they may be written in the same forms as Eqs. �2� and �4� if
we impose the boundary conditions a0�t�=0 and b0�t�=0.

In general, the rate kernels of exchange and catalyzed
birth are dependent on the reactant aggregates’ sizes. Here
for the convenience of solving the rate equations, we focus
on typical symmetrical exchange kernels K�k , l�=Kkl and
L�k , l�=Lkl, which are proportional to the sizes of aggregates
migrating out and accepting one monomer �K and L are two
proportionality constants�. The catalysis-driven birth kernels
of population and assets are assumed to be I�k , l�= Ikl� and
J�k , l�=Jkl�, respectively, where I and J are also proportion-
ality constants, and � and � are parameters reflecting the
dependence of the catalyzed birth rates on the catalyst aggre-
gate size. This asset-catalyzed population birth kernel takes
account of the physical sense that the next catalyzed birth in
the population will take place faster for larger population and
asset aggregates �when ��0�. A similar effect occurs for
population-catalyzed asset birth.

The rate equations for our system are then reduced to

da1

dt
= 2KM1

A�a2 − a1� − IM�
Ba1, �5�

dak

dt
= KM1

A��k + 1�ak+1 + �k − 1�ak−1 − 2kak�

+ IM�
B��k − 1�ak−1 − kak� �k = 2,3, . . . � , �6�

db1

dt
= 2LM1

B�b2 − b1� − JM�
Ab1, �7�

dbk

dt
= LM1

B��k + 1�bk+1 + �k − 1�bk−1 − 2kbk�

+ JM�
A��k − 1�bk−1 − kbk� �k = 2,3, . . . � , �8�

where M�
A�t�=�k=1

� k�ak�t� and M�
B�t�=�k=1

� k�bk�t� are the �th
moment of the distribution ak�t� and �th moment of bk�t�,
respectively. The first two moments M0

A�t�=�k=1
� ak�t� and

M1
A�t�=�k=1

� kak�t� are the total number and the total mass of
the population aggregates.

Several methods have been used to solve the rate equa-
tions in different aggregation processes. For the simple co-

agulation process Ai+Aj →
K�i,j�

Ai+j, explicit solutions were ob-
tained for K�i , j�=1, i+ j, and ij by introducing some suitable

generating functions �1,4,8,9�. In aggregation-annihilation
processes, the rate equations were solved with the help of a
special Ansatz ak�t�=A�t��a�t��k−1, and by the generating
function method as well �15�. In exchange-driven aggrega-
tion processes, the rate equations were solved through mak-
ing some scaling Ansatz directly �20,21,25� or with the help
of the special Ansatz ak�t�=A�t��a�t��k−1 �22–24�.

Here, for the rate equation �6�, we find that if we make the
assumption of a recursion relation ak�t�=a�t�ak−1�t� �k
=2,3 , . . . �, the rate equation for ak�t� can be reduced to a rate
equation for ak−1�t� with the function a�t� governed by the
equation

da

dt
= KM1

A�1 − a�2 + IM�
B�1 − a� , �9�

which is valid for all rate equations of ak�t� �k=2,3 , . . . �. So
in this paper, we rewrite the above recursion relation as-
sumption for ak�t� in an Ansatz form, and correspondingly
for bk�t�, as

ak�t� = a1�t��a�t��k−1, bk�t� = b1�t��b�t��k−1. �10�

These equations were used in solving the rate equations of
aggregation-annihilation processes by Krapivsky �15� and in
our previous work �22–24� �here we use a1�t� instead of A�t�
to make its meaning more explicit�. The rate equations are
solved under monodisperse initial conditions, which assume
that there exist only monomer aggregates of population and
assets at t=0 �more precisely, at t=0+�. They can be ex-
pressed as ak�0�=A0�k1 and bk�0�=B0�k1, where A0 and B0

are the initial aggregate concentrations of population and
assets, respectively.

Substituting the Ansatz �10� into the rate equation �5�, we
derive the differential equation for a1�t� as

da1

dt
= − 2KM1

Aa1�1 − a� − IM�
Ba1. �11�

When we substitute the Ansatz �10� into the rate equation �6�,
it is transformed into

ak−1da1

dt
+ �k − 1�a1ak−2da

dt

= ak−1�− 2KM1
Aa1�1 − a� − IM�

Ba1�

+ �k − 1�a1ak−2�KM1
A�1 − a�2 + IM�

B�1 − a��

�k = 2,3, . . . � . �12�

Because this equation is valid for all k=2,3 , . . ., it is sepa-
rated into two differential equations for a�t� and a1�t�, which
are the same as Eqs. �9� and �11�, respectively. Here with the
help of the recursion relation assumption or Ansatz �10�, the
infinite set of rate equations for a1�t� and ak�t� �k=2,3 , . . . �
are reduced to the same two ordinary differential equations.

The infinite set of rate equations for b1�t� and bk�t�
�k=2,3 , . . . � are also reduced to two ordinary differential
equations under the Ansatz �10� in the same way as
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db

dt
= LM1

B�1 − b�2 + JM�
A�1 − b� , �13�

db1

dt
= − 2LM1

Bb1�1 − b� − JM�
Ab1. �14�

The monodisperse initial conditions are transformed
correspondingly into

a = 0, a1 = A0, b = 0, b1 = B0 at t = 0. �15�

From the viewpoint of mathematics, the use of the Ansatz
�10� is to give restrictions ak�t�=a�t�ak−1�t� �k=2,3 , . . . � and
bk�t�=b�t�bk−1�t� �k=2,3 , . . . � on the solutions of the original
rate equations �5�–�8�. So the solutions of ak�t� and bk�t�
from the reduced differential equations �9�, �11�, �13�, and
�14� are special solutions of the original rate equations
�5�–�8�. This method is popular in solving differential equa-
tions. When the added restrictions are consistent with the
original differential equations, special solutions can be ob-
tained, otherwise no special solutions can be obtained. In the
following, we can solve the reduced differential equations
�9�, �11�, �13�, and �14� to obtain the special solutions of the
original rate equations �5�–�8�. This indicates that in this
model the Ansatz �10� or the restrictions ak�t�=a�t�ak−1�t�
�k=2,3 , . . . � and bk�t�=b�t�bk−1�t� �k=2,3 , . . . � are consis-
tent with the original rate equations, and thus the Ansatz �10�
are applicable.

In the Ansatz �10�, the first two moments of the aggregate
size distributions ak�t� and bk�t� can be expressed as

M0
A�t� = �

k=1

�

ak�t� = a1�
k=1

�

ak−1 =
a1

1 − a
, �16�

M1
A�t� = �

k=1

�

kak�t� = a1�
k=1

�

kak−1 =
a1

�1 − a�2 , �17�

M0
B�t� = �

k=1

�

bk�t� = b1�
k=1

�

bk−1 =
b1

1 − b
, �18�

M1
B�t� = �

k=1

�

kbk�t� = b1�
k=1

�

kbk−1 =
b1

�1 − b�2 . �19�

Using these moment expressions, Eqs. �9�, �11�, �13�, and
�14� can be rewritten as

1

1 − a

da

dt
= KM0

A + IM�
B , �20�

1

a1

da1

dt
= − 2KM0

A − IM�
B , �21�

1

1 − b

db

dt
= LM0

B + JM�
A, �22�

1

b1

db1

dt
= − 2LM0

B − JM�
A. �23�

From these equations, the equations for the total aggregate
numbers of population and assets can be derived as follows:

d ln M0
A

dt
=

1

1 − a

da

dt
+

1

a1

da1

dt
= − KM0

A, �24�

d ln M0
B

dt
=

1

1 − b

db

dt
+

1

b1

db1

dt
= − LM0

B. �25�

These equations are solved under the initial conditions
M�

A�0�=�k=1
� k�ak�0�=�k=1

� k�A0�k1=A0 and M�
B�0�=B0 to

yield

M0
A = A0�1 + KA0t�−1, �26�

M0
B = B0�1 + LB0t�−1. �27�

The differential equations for M1
A and M1

B are also
derived from Eqs. �20�–�23� by the use of the M1

A and M1
B

expressions,

d ln M1
A

dt
=

2

1 − a

da

dt
+

1

a1

da1

dt
= IM�

B , �28�

d ln M1
B

dt
= JM�

A. �29�

The solutions of those equations are

M1
A = A0 exp�I�

0

t

M�
Bdt� , �30�

M1
B = B0 exp�J�

0

t

M�
Adt� . �31�

In the next section we study the kinetics of the system in
various cases with different catalyzed birth rate kernel
parameters � and �, which reflect the dependence of the
catalyzed birth rates on the catalyst aggregate sizes.

III. KINETICS OF THE POPULATION AND ASSET
MUTUALLY CATALYZED BIRTH MODEL

A. The case with �=0 and �=0

First, we investigate the case with catalyzed birth rate
kernel parameters �=0 and �=0, a case where two catalyzed
birth rates I�k , l�= Ik and J�k , l�=Jk are both independent of
the catalyst aggregate sizes.

Substituting Eqs. �26� and �27� into Eq. �20�, we derive
the solution for a�t�,

a�t� = 1 − �1 + KA0t�−1�1 + LB0t�−I/L. �32�

Using the expression a1=M0
A�1−a�, the population aggregate

size distribution can then be solved exactly,
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ak�t� = A0�1 + KA0t�−2�1 + LB0t�−I/L

	�1 − �1 + KA0t�−1�1 + LB0t�−I/L�k−1. �33�

It approaches the conventional scaling form in the scaling
region of k
1 and t
1 �15�:

ak�t� 	 K−2A0
−1�LB0�−I/Lt−2−I/L��x�, x = k/SA�t� , �34�

with the scaling function ��x�=exp�−x�. The characteristic
size of the population aggregates is

SA�t� = KA0�LB0�I/Lt1+I/L. �35�

It grows with time in power law form.
Here a very important aggregation phenomenon is

found—the kinetic behavior of ak�t� is dominated by asset
exchange and asset-catalyzed population birth. But it is un-
expectedly not dominated by the exchange of population
itself.

The total population can be obtained as

M1
A = a1�1 − a�−2 = A0�1 + LB0t�I/L. �36�

It grows with time as a power law in the long-time limit.
The conventional scaling expression of population

aggregate size distribution �34� can be modified as follows:

ak�t� 	 K−1t−1�SA�t��−1��x�, x = k/SA�t� . �37�

Here it is worth noticing that the aggregate size distribution
can be written as ak�t�=M0

A�1−a�ak−1 under the Ansatz �10�.
So if the solution of a�t� can be written as a�t�=1
− �SA�t��−1 and SA�t� grows with time monotonically, the ag-
gregate size distribution can be described in the following
modified scaling form:

ak�t� 	 M0
A�t��SA�t��−1 exp�− x�, x = k/SA�t� , �38�

where SA�t� is the characteristic size of the aggregates.
The asset aggregate distribution can be obtained in the

same way,

bk�t� = B0�1 + LB0t�−2�1 + KA0t�−J/K

	�1 − �1 + LB0t�−1�1 + KA0t�−J/K�k−1, �39�

and it obeys the same conventional scaling form,

bk�t� 	 L−2B0
−1�KA0�−J/Kt−2−J/K��x�, x = k/SB�t� , �40�

with the scaling function ��x�=exp�−x� and the characteris-
tic size of the asset aggregates SB�t�=LB0�KA0�J/Kt1+J/K. The
kinetic behavior of bk�t� is found to be dominated by popu-
lation exchange and population-catalyzed asset birth. It is
also unexpectedly not dominated by the exchange of an asset
itself.

If SB�t� grows with time monotonically, the aggregate size
distribution bk�t� also can be described in the following
modified scaling form:

bk�t� 	 L−1t−1�SB�t��−1��x� 	 M0
B�t��SB�t��−1 exp�− x�,

x = k/SB�t� . �41�

Because M0
A�t� and M0

B�t� remain unchanged for all
cases with different values of the parameters � and �, the

aggregate size distributions ak�t� and bk�t� will keep the same
scaling forms as Eq. �37� and �41�, respectively. The differ-
ent values of parameters � and � bring changes only in the
characteristic sizes of the aggregates SA�t� and SB�t�.

B. The case with �=0 and general �

We then study the �=0, �=1 case �the �=1, �=0 case
has symmetric solutions�. In this case, the asset-catalyzed
population birth rate kernel I�k , l�= Ik is still independent of
the catalyst �asset� aggregate’s size as in the above case,
while the population-catalyzed asset birth rate kernel J�k , l�
=Jkl is proportional to the catalyst �population� aggregate’s
size. Because the rate equations �5� and �6� for a1�t� and
ak�t�, and the differential equations �20� and �21� for a�t� and
a1�t� are the same for all cases with the same � and different
�, the population aggregate size distributions ak�t� for all
cases with the same � and different � are also expressed as
Eqs. �33� and �34�.

For the asset aggregates, we derive the equation for b�t�
by substituting Eqs. �27� and �36� into Eq. �22�,

1

1 − b

db

dt
= LB0�1 + LB0t�−1 + JA0�1 + LB0t�I/L. �42�

The solution is obtained under the initial condition �15� as

b�t� = 1 − exp� JA0

�I + L�B0
��1 + LB0t�−1

	exp�−
JA0

�I + L�B0
�1 + LB0t�1+I/L� . �43�

Using the expression b1=M0
B�1−b�, we obtain the exact

solution of the asset aggregate size distribution:

bk�t�

=

B0 exp
 JA0

�I + L�B0
�

�1 + LB0t�2 exp
 JA0

�I + L�B0

�1 + LB0t�1+I/L�
	�1 −

exp
 JA0

�I + L�B0
�

�1 + LB0t�exp
 JA0

�I + L�B0

�1 + LB0t�1+I/L�

k−1

.

�44�

Its asymptotic behavior can be written in a scaling form,

bk�t� 	 L−2B0
−1 exp� JA0

�I + L�B0
�t−2

	exp�−
JA0

�I + L�B0
�LB0t�1+I/L���x�, x = k/SB�t� ,

�45�

with the scaling function ��x�=exp�−x�, where the typical
size of the asset aggregates is
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SB�t� = LB0 exp�−
JA0

�I + L�B0
�t exp� JA0

�I + L�B0
�LB0t�1+I/L� .

�46�

This asset aggregate size distribution may also be written in
a modified scaling form as Eq. �41�.

Here the kinetic behavior of bk�t� is dominated by the
asset exchange and the catalyzed birth of population and as-
sets, not by the exchange of population, in contrast to the
above �=�=0 case.

The total mass of the assets can be obtained as

M1
B =

M0
B

1 − b
= B0 exp�−

JA0

�I + L�B0
�

	exp� JA0

�I + L�B0
�1 + LB0t�1+I/L� . �47�

It grows with time exponentially in the long-time limit.
The �=0 and general � case can be studied in the long-

time region. From the population aggregate size distribution
�33�, we can calculate its moments in the long-time limit as
follows:

M�
A = �

k=1

�

k�ak 	 �c1t−1+�1+I/L�� for � � − 1,

c2t−2−I/L ln t for � = − 1,

c3t−2−I/L for � � − 1,
� �48�

where

c1 = 
�1 + ��K−1�KA0���LB0�I�/L,

c2 = �1 + I/L�A0�KA0�−2�LB0�−I/L,

c3 = ��− ��A0�KA0�−2�LB0�−I/L,

and ��n�=�l=1
� l−n �n�1� is the Riemann zeta function.

Inserting M�
A into the governing equation �22�, we find the

solution for b�t� as follows:

b 	 �1 − �LB0t�−1 exp�− c4t�1+I/L��� for � � 0,

1 − �LB0t�−1 for � � 0,
� �49�

where c4=JLc1 / �I+L��. The asset aggregate size distribution
is then obtained. It evolves according to the conventional
scaling form in the ��0 case, and it evolves according to the
modified scaling form in the ��0 case as Eq. �41� with the
characteristic aggregate size

SB�t� = �LB0t exp�c4t�1+I/L��� for � � 0,

LB0t for � � 0.
� �50�

C. The case with general �=�

We now study the �=�=1 case, where the catalyzed birth
rate kernels I�k , l�= Ikl and J�k , l�=Jkl are both proportional
to the catalyst aggregate sizes. Equations �28� and �29�
become

d ln M1
A

dt
= IM1

B, �51�

d ln M1
B

dt
= JM1

A. �52�

The relation between M1
A and M1

B can be derived directly
under the initial conditions M1

A�0�=A0 and M1
B�0�=B0, i.e.,

J�M1
A − A0� = I�M1

B − B0� . �53�

With this relation, Eq. �51� can be written as

d ln M1
A

dt
= J�M1

A − A0� + IB0. �54�

For the JA0� IB0 case, it can be solved exactly to yield

M1
A = A0

JA0 − IB0

JA0 − IB0e�JA0−IB0�t . �55�

In contrast to all the above cases, here the solution is valid
only in the time region t� tc, where

tc =
ln�JA0/IB0�
JA0 − IB0

. �56�

The total mass of asset aggregates M1
B can be solved exactly

in the same way from Eqs. �52� and �55�. The solution is

M1
B = B0

IB0 − JA0

IB0 − JA0e�IB0−JA0�t , �57�

which is also valid only in the time region of t� tc.
The evolution equations of population and asset aggre-

gates and their solutions reveal another important behavior
of the aggregation. M1

A and M1
B grow with time as in the

above cases, but they grow much faster because the cata-
lyzed birth rate kernels of population and assets are both
proportional to the size of the aggregate �population aggre-
gate or asset aggregate� itself, as well as the catalyst aggre-
gate sizes. When t increases and reaches tc, M1

A and M1
B

approach infinite values. When t reaches tc, their kinetic be-
haviors can be analyzed. For example, at t= tc−�t
��t→0+�, M1

A can be written as

M1
A�tc − �t� = A0

JA0 − IB0

JA0�1 − e−�JA0−IB0��t�
	

A0

JA0�t
. �58�

So at a finite time t= tc, gelation transitions of population and
asset aggregates take place.

In the time region t� tc, we study the evolution behavior
of population and asset aggregates approaching the gelation
point. Substituting Eqs. �26�, �27�, �55�, and �57� into Eqs.
�20� and �22�, we derive the differential equations for a�t�
and b�t� as follows:

1

1 − a

da

dt
= KA0�1 + KA0t�−1 + IB0

IB0 − JA0

IB0 − JA0e�IB0−JA0�t ,

�59�
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1

1 − b

db

dt
= LB0�1 + LB0t�−1 + JA0

JA0 − IB0

JA0 − IB0e�JA0−IB0�t .

�60�

These equations can be solved exactly under the initial
conditions �15�. The results are

a = 1 −
JA0 − IB0e�JA0−IB0�t

�JA0 − IB0��1 + KA0t�
, �61�

b = 1 −
IB0 − JA0e�IB0−JA0�t

�IB0 − JA0��1 + LB0t�
. �62�

Using the expressions a1=M0
A�1−a� and b1=M0

B�1−b�, we
obtain the kinetic behaviors of population and asset
aggregate distributions before the gelation point,

ak�t� =
A0

JA0 − IB0

JA0 − IB0e�JA0−IB0�t

�1 + KA0t�2

	�1 −
JA0 − IB0e�JA0−IB0�t

�JA0 − IB0��1 + KA0t��
k−1

, �63�

bk�t� =
B0

IB0 − JA0

IB0 − JA0e�IB0−JA0�t

�1 + LB0t�2

	�1 −
IB0 − JA0e�IB0−JA0�t

�IB0 − JA0��1 + LB0t��
k−1

. �64�

For the JA0= IB0 case, the relation between M1
A and M1

B of
Eq. �53� becomes

JM1
A = IM1

B. �65�

The solutions of M1
A and M1

B from Eqs. �51� and �52� are

M1
A = A0�1 − JA0t�−1, �66�

M1
B = B0�1 − IB0t�−1. �67�

These are also valid only for time t� tc= �JA0�−1= �IB0�−1.
When t increases to tc, the population and asset aggregates
approach infinite gelation clusters.

In the time region t� tc, the evolution behavior of
population and asset aggregates before the gelation point can
be obtained in the same way,

ak�t� = A0
1 − JA0t

�1 + KA0t�2�1 −
1 − JA0t

1 + KA0t
�k−1

, �68�

bk�t� = B0
1 − IB0t

�1 + LB0t�2�1 −
1 − IB0t

1 + LB0t
�k−1

. �69�

The general �=� case can be studied in the long-time
region. On the Ansatz �10�, we derive the expressions of
population and asset aggregate size distributions by their first
two moments. For the population aggregates, a�t� and a1�t�
are directly expressed as follows:

a = 1 −
M0

A

M1
A , a1 =

�M0
A�2

M1
A . �70�

The population aggregate size distribution is written as

ak =
�M0

A�2

M1
A �1 −

M0
A

M1
A�k−1

, �71�

and that of asset aggregate can be written in the correspond-
ing form.

Considering the effects of the exchange-driven aggrega-
tion and the catalyzed birth, we can derive M0

A /M1
A�1 in the

long-time limit. The �th moment of the population aggregate
size distribution can be derived in the long-time limit as
follows:

M�
A 	�


�1 + ��
�M1

A��

�M0
A��−1 for � � − 1,

�M0
A�2

M1
A �1 −

M0
A

M1
A�−1

ln
M1

A

M0
A for � = − 1,

�M0
A�2

M1
A ��− �� for � � − 1.

�
�72�

That of the asset aggregate has the corresponding form.
Now we turn to derive the relation between M1

A and M1
B.

From Eqs. �28� and �29�, we have

JM�
A�M1

A�−1dM1
A = IM�

B�M1
B�−1dM1

B. �73�

For the �=��−1 case, Eq. �73� is rewritten as follows using
the M�

A and M�
B expressions �72�:

J
�M1

A��−1

�M0
A��−1dM1

A 	 I
�M1

B��−1

�M0
B��−1dM1

B. �74�

Using Eqs. �26� and �27�, it can be further written as

JK�−1�M1
A��−1dM1

A 	 IL�−1�M1
B��−1dM1

B. �75�

When ��0, it can be solved to yield

JK�−1�M1
A�� 	 IL�−1�M1

B��. �76�

Hence we solve for M1
B and further obtain M�

B as

M�
B 	 
�1 + ��

J

I
�K

L
��−1 �M1

A��

�M0
B��−1 . �77�

Inserting it into Eq. �28� and using the M0
B solution �27�, we

derive the equation for M1
A as follows:

�M1
A�−�−1dM1

A 	 
�1 + ��JK�−1t�−1dt . �78�

For ��0, the total mass of the population M1
A is then finally

obtained in the long-time limit,

M1
A 	 �
�1 + ��JK�−1�−1/���tc

A�� − t��−1/�

	 �
�1 + ���JK�−1�−1/��tc
A�−��−1�/��tc

A − t�−1/�,

�79�

where tc
A is a finite critical time when M1

A�tc
A�→�. The total
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mass of the assets in the long-time limit is obtained in the
same way as

M1
B 	 �
�1 + ���IL�−1�−1/��tc

B�−��−1�/��tc
B − t�−1/�. �80�

But using the solution of M1
A, we derive M1

B from Eq. �76� as

M1
B 	 �
�1 + ���IL�−1�−1/��tc

A�−��−1�/��tc
A − t�−1/�. �81�

So M1
A and M1

B reach infinite values at the same time tc= tc
A

= tc
B, which reveals that the population and asset aggregates

undergo gelation transitions at the same gelation time tc.
For −1���0, Eq. �78� gives

M1
A 	 �− 
�1 + ��JK�−1t� − c6��−1/� 	 �− c6��−1/�,

�82�

where c6 is an integration constant. From Eq. �76� we have

M1
B 	 � J

I
�1/��K

L
���−1�/�

M1
A. �83�

So M1
A and M1

B grow with time and reach constant values in
the long-time limit. The �th moments of population and as-
sets are then derived as follows:

M�
A 	 
�1 + ��

�M1
A��

�M0
A��−1 	 
�1 + ��K�−1�M1

A��t�−1,

�84�

M�
B 	 
�1 + ��

�M1
B��

�M0
B��−1 	 
�1 + ��L�−1�M1

B��t�−1.

�85�

Inserting Eq. �85� into Eq. �20�, we derive the equation for
a�t� as

1

1 − a

da

dt
= t−1 + 
�1 + ��IL�−1�M1

B��t�−1 	 t−1. �86�

The solution of this equation is

a�t� 	 1 − t−1. �87�

With the expression a1=M0
A�1−a�, the population aggregate

size distribution in the long-time limit can then be obtained,
obeying the conventional scaling form,

ak�t� 	 K−1t−2 exp�− k/SA�t��, SA�t� 	 t . �88�

The asset aggregate size distribution obeys the same
conventional scaling form with the same scaling exponents,

bk�t� 	 L−1t−2 exp�− k/SB�t��, SB�t� 	 t . �89�

For �=�=−1, we derive the equation for the relation
between M1

A and M1
B in the long-time limit from Eqs. �28�

and �29� by the M1
A and M1

B expressions �72�,

J�M0
A

M1
A�2

ln M1
AdM1

A 	 I�M0
B

M1
B�2

ln M1
BdM1

B. �90�

Using the M0
A and M0

B expressions, we further write the
equation as

JK−2�M1
A�−2 ln M1

AdM1
A 	 IL−2�M1

B�−2 ln M1
BdM1

B. �91�

This gives the relation between M1
A and M1

B as

JK−2�M1
A�−1 ln M1

A 	 IL−2�M1
B�−1 ln M1

B. �92�

From this we rewrite M�
B as

M�
B 	

�M0
B�2

M1
B ln M1

B 	 I−1JK−2t−2�M1
A�−1 ln M1

A. �93�

Inserting it into Eq. �28�, we derive the equation for M1
A as

�ln M1
A�−1dM1

A 	 JK−2t−2dt . �94�

The integration of this equation gives the equation that M1
A

satisfies as

ln�ln M1
A� + ln M1

A +
1

2 	 2!
�ln M1

A�2 +
1

3 	 3!
�ln M1

A�3 + ¯

	 − JK−2t−1 + c7 	 c7, �95�

where c7 is an integration constant. So M1
A grows with time

and reaches a constant value in the long-time limit, and so
does M1

B. The population and asset aggregate size distribu-
tions in the long-time limit obey the same conventional
scaling form as those in the −1���0 case.

For �=��−1, we again derive the equation for the rela-
tion between M1

A and M1
B in the long-time limit from Eqs.

�28� and �29� by the expressions for M0
A, M0

B, M1
A, and M1

B,

JK−2�M1
A�−2dM1

A 	 IL−2�M1
B�−2dM1

B. �96�

It gives the relation between M1
A and M1

B,

JK−2�M1
A�−1 	 IL−2�M1

B�−1 + c8, �97�

where c8 is an integration constant. Using the solution of M1
B

to express M�
B and inserting it into Eq. �28�, we transform the

equation of M1
A into

�1 − c8M1
A�−1dM1

A 	 ��− ��JK−2t−2dt . �98�

The solution is

M1
A 	 c8

−1�1 − c9 exp�c8��− ��JK−2t−1�� 	 c8
−1, �99�

where c9 is an integration constant. So M1
A and M1

B again
reach constant values in the long-time limit. The population
and asset aggregate size distributions in the long-time limit
again obey the same conventional scaling form as in the
cases −1��=��0 and �=�=−1 above.

In conclusion, we obtain the evolution behaviors of our
system in the general �=� case. The population and asset
aggregate size distributions evolve according to the conven-
tional scaling form in the �=��0 case, and the total masses
M1

A and M1
B grow with time and reach constant values in the

long-time limit. When �=��0, both the population and as-
set aggregates undergo gelation transitions at a finite time,
which does not appear in the migration-driven aggregation
process with self-birth and -death �23�.

IV. SUMMARY

In summary, we have studied the interaction between the
population and assets in exchange-driven processes through
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an exchange-driven aggregation growth model of population
and assets with their mutually catalyzed birth. The rate ker-
nel of population exchange-driven growth, K�k , l�=Kkl, and
that of assets, L�k , l�=Lkl, are both proportional to the sizes
of aggregates migrating out and accepting one monomer. The
rate kernel of asset-catalyzed birth of population is I�k , l�
= Ikl� and that of population-catalyzed birth of assets is
J�k , l�=Jkl�. Based on the mean-field theory, we investigated
the evolution behaviors of the aggregate size distributions of
the population and assets by solving their generalized
Smoluchowski rate equations. The kinetic behaviors are
found to fall into three categories, which are illustrated in
Table I. �i� When the rate kernels of the asset-catalyzed birth
of population and population-catalyzed birth of assets are
both independent of the catalyst aggregate sizes, i.e., I�k , l�
= Ik and J�k , l�=Jk, the aggregate size distributions of the
two species obey the conventional scaling law. The kinetic
behavior of population aggregate size distribution ak�t� is

dominated by asset exchange and asset-catalyzed population
birth, and is unexpectedly not dominated by the exchange of
population itself. On the other hand, the kinetic behavior of
asset aggregate size distribution bk�t� is dominated by popu-
lation exchange and population-catalyzed asset birth. �ii�
When the asset-catalyzed population birth rate kernel I�k , l�
= Ik is still independent of the catalyst �asset� aggregate’s
size while the population-catalyzed asset birth rate kernel
J�k , l�=Jkl� ���0� is dependent on the catalyst �population�
aggregate’s size, the aggregate size distribution of population
remains unchanged as in case �i�, while the asset aggregate
size distribution obeys a modified scaling law. �iii� When the
rate kernels of asset-catalyzed population birth and
population-catalyzed asset birth are both dependent on the
sizes of the catalyst aggregates, I�k , l�= Ikl� and J�k , l�
=Jkl� ��=��0�, both the population and asset aggregates
undergo gelation transitions at a finite time in the �=��0
case, while in the �=��0 case, the total population and the
total mass of assets approach finite values, and their aggre-
gate size distributions obey the conventional scaling form.
Meanwhile in the migration-driven aggregation process with
self-birth and -death, there is no gelation transition at finite
time.

On the other hand, we also make a qualitative connection
between our theoretical prediction and realistic data of urban
population of a country. It is well known that the total size of
a country grows exponentially with time. Similarly to Eq.
�50�, the typical population size increases as exp�ct�1+J/K���
for ��0. Thus, if �1+J /K��=1, the typical population size
grows as exp�ct�. Since the total size and the typical size of
the population have the same order of magnitude, the total
population size indeed grows exponentially in the case of
�1+J /K��=1 and ��0.
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